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Introduction
It 1s well known that phase ambiguities cause

troubles 1n the determination of crystal structures.
Many difficult structures have such a common prop-
erty that some kind of phase ambiguities often
occurs 1n the process of structure determination.
Phase ambiguity can also appear as an inherent
property of certain techniques such as single 1somor-
phous replacement (SIR) and one-wave-length anom-
alous scattering (OAS).

On the other hand phase ambiguity may be rather
an indication of success than a portent of failure.
Because when phase ambiguity occurs, the phase
problem in fact has been partially solved.

Phase ambiguities may be classified into two
categories:

1. Translational phase ambiguity

In this case, phases of reflections belonging to
certain index group(s) will remain systematically un-
determined after a conventional phase developing
process. The task of solving this problem 1s to find
some way to derive the undetermined phases by
making use of the known ones.

2. Enantiomorphous phase ambiguity

This can only occur in the determination of non-
centrosymmetric structures. In the case that this
ambiguity occurs, we can find two possible phases
(one true and one fault) associated with each re-
flection. The remaining task of the structure de-
termination 1s to make choice between the two possi-
bilities for each reflection. Thus the phase problem
reduces to a matter similar to that of solving a
centrosymmetric structure.

[n our group, direct methods for breaking various
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kinds of phase ambiguities are in continuously de-
veloping. Some of them were successfully applied to a
number of difficult small structures. Others are now
tested on protein structures and the results are very

encouraging.

Phase Ambiguities due to Pseudo Symmetry in Real
Space

For detail discussion on this topic, the reader is
referred to the paper by Fan & Zheng (1982) and the
paper cited therein. Here a brief account is given.

[. Translational phase ambiguity due to pseudo trans-
lational symmetry

If iIn a crystal structure there exists a pseudo
translational vector t=T/n, where T 1s the shortest
exact translation vector in the structure parallel to ¢
and # 1s an integer, then there will exist some group(s)
of reflections having systematically weak intensities.
The reciprocal vector H of these reflections will satisfy
the relation H-t#n. In the process of the structure
determination, phases of reflections belonging to the
‘'strong’ group(s) with H-fr=n can be obtained by
using conventional methods, but the phases of re-
flections belonging to the ‘weak’ group(s) with
H-t#n will be rather difficult to determine. This
results in an n-fold superimposed 1image, which con-
tains the true structure together with n—1 trans-
lational images of the structure. Normally it would be
very difficult to pick up the true structure from such a
multiple 1mage. Fan (1975) proposed a method for
solving this problem by making use of a modified
Sayre equation. The method has been verified with
the crystal structure of SHAS, C;H,O;N;K, which
crystallizes in space group P2,2,2, with a=7.51A,
h=9.95A, c=10.98 A and Z=4. The K atom in the
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Fig. 1. Fourier projections of SHAS.
. a) Calculated with the heavy-atom phases.
| b) Translational ambiguity resolved using the modified
Sayre equation.
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asymmetric unit is situated at x=0.000, y=0.250, z=
0.890. Hence the arrangement of the heavy-atoms
possess a subperiodicity of translation, t=(a+b+c¢)/
2. Consequently the heavy-atoms have no contri-
bution to the reflections with i+ A +/ odd. Thus the
phases of these reflections were difficult to determine
by either heavy-atom or conventional direct methods.
Figure la shows the Fourier projection along the a
axis calculated with the heavy-atom phases. In this
projection there exist two pseudo mirror planes, shown
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as two dotted lines parallel to the » and ¢ axes
respectively, which are originated from the pseudo
translational symmetry ¢. According to Fan (19654,
1975) we have

a=(f1V)). FuFu_n (1)
e

where FY, denotes the structure factor belonging to
the ‘weak’ group(s). With (1) the phases of the ‘weak’
reflections were derived making use of those from the
‘strong’ ones. The resulting Fourier projection is
shown 1n Fig. 1b, in which the pseudo symmetry has
been eftectively eliminated. The method has further
developed to tackle the phase problem in solving
superstructures (Fan, He, Qian & Liu, 1978) and
finally incorporated into the MULTAN program
(Fan, Yao, Main & Woolfson, 1983). Studies on the
application of direct methods to structures having
pseudo translational symmetry have also been pre-
sented by other authors (Gramlich, 1975, 1978, 1984:
Boehme, 1982; Prick, Beuskens & Gould, 1983:
Giacovazzo, 1984)

2. Enantiomorphous phase ambiguity due to pseudo
centrosymmetry

Non-centrosymmetric structures can reveal pseudo
centrosymmetry 1f they contain some dominating
heavy-atoms in centrosymmetric arrangement. In this
case either Patterson or conventional direct methods
would result in a pseudo centrosymmetric image, in
which the true structure and its enantiomorph are
superimposed. This obstructs the solution of the
structure. Special methods have been proposed to
overcome this obstacle (Van den Hark, Prick &
Beuskens, 1976; Prick, Beuskens & Gould, 1978; Hull
& Irwin, 1978; Prick, Beuskens & Gould, 1983). With
these methods a set of difference structure factors are
first calculated by subtracting the heavy-atom contri-
bution from the observed structure factors, then the
light atoms can be found by solving the ‘difference
structure’. From another point of view, the existence
of the centrosymmetric arragement of the heavy-
atoms might facilitate rather than obstruct the so-
lution of the structure. One can calculate easily the
real part of the structure facrors from a map contain-
ing both enantiomorphs. Then the absolute value of
the imaginary part of the structure factors can be
obtained as

| Byl=(1Fyl?—A3)"" .

where A, and By are the real and imaginary parts of
the structure factors Fy respectively. Now it can be
seen that, owing to the existence of the centrosym-
metric arrangement of heavy-atoms, the phase prob-
lem of a non-centrosymmetric structure reduces to a
problem of finding the signs of By's. This can be
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Fig. 2. Composite Fourier maps of ZCW.

a) Enantiomorphous ambiguity resolved using the ‘com-
ponent relation’ (The atoms unambiguously located
are denoted by solid contour lines).

b) The final map.

I

—

solved without much difficulties by making use of the
‘component relation” (Fan, 1965b).

By=(2f/V) ZAH By (2)
i

The procedure has been verified (Fan & Zheng, 1978)
by a typical difficult small structure ZCW.,
C5,0,,NH,--HI, with space group P2, amd unit cell
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parameters a=12.58 A, h=14.38A, c=11.00A, =
114.6" and Z=2. Neither Patterson method nor direct
methods as MULTAN-80 (Main et al., 1980) and
RANTAN (Yao, 1981) could solve the structure.
From the resulting ambiguous Fourier map, 331
largest Ay and 79 largest | B, | were obtained. The
signs of By’s were then derived using (2). A Fourier
map calculated with the 331 4, and 79 B,, revealed 33
of the total 46 light-atoms unambiguously (Fig. 2a).
The final Fourier map is shown in Fig. 2b.

Phase Ambiguities due to the Phasing Procedure in
Reciprocal Space

[. Phase degeneration in direct methods
A serious problem in the application of direct
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Fig. 3. Composite E-maps of L-Alanyglycine.
a) Showing pseudo centrosymmetry.
b) After the enantiomorphous ambiguity has been resolved.
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methods is the problem of phase degeneration, 1.e. the
phases derived for a non-centrosymmetric structure
converge to a set of centrosymmetric phases. This
often occurs when the crystal belongs to a polar space
group such as P2,, C2, P4,, etc. When phase de-
generation occurs, the resulting E-map will contain
both enantiomorphs. Some authors considered this
problem as the instability of enantiomorph fixation.
Accordingly a number of procedures strengthening
the enantiomorph specification and stabilizing the
enantiomorph fixation have been proposed (Duax &
Hauptman, 1972; Busetta, 1976; Gilmore, 1977; Hull
& Irwin, 1978; Olthof & Schenk, 1981). However, the
problem can be solved by an alternative method (Fan
& Qian, 1981), which makes use of the superimposed
image resulting from phase degeneration to calculate
a set of A4 and | By |, then solves the ‘sign problem’ of
B, by the component relation (2). The efficiency of
the method has been test with the structure of L-
Alanyglycine, C;H,,N,O;, which was solved orig-
inally by Koch & Germain (1970). The crystals belong
to space group P2, with ¢ =15.283 A, b=11810A, c=
5510 A, f=101.58" and Z=2. The test calculation
was divided into two stages. In the first stage, the
structure was assumed to be centrosymmetric with
space group P2,/m, the signs rather than phases were
derived by a conventional direct method. This re-
sulted in an E-map containing both enantiomorphous
with a few ghost peaks (Fi1g. 3a). In the second stage, a
set of A4 and | By | was calculated according to the
above E-map and the signs of By were derived by
making use of (2). In the resulting E-map (Fig. 3b)
one of the enantiomorphs has been eliminated and the
true structure clearly revealed.

2. Enantiomorphous phase ambiguities in SIR and
OAS methods

In the case of single isomorphous replacement
(SIR), for a given reciprocal vector H, we have

Fyxn=Fyp—Fyr (3)

where Fp , 1s the structure factor of the native
protein, Fy p 1s that of the heavy-atom derivative and
Fy » 1s the contribution of the replacing-atoms to
Fy ,. The magnitudes of Fy , and Fy , can be
obtained from experiment. Accordingly the param-
eters of the replacing-atoms can be found and Fy .
be calculated. Consequently, we have two ways for
drawing the triangle of (3) leading to an enantio-
morphous phase doublet for both Fy y and Fy ;, 1n
the phase-vector diagram as shown in Fig. 4.

In the case of one-wave-length anomalous scatter-
ing (OAS), we have

n=Fy+Fy (4)

and
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Fig. 4. Enantiomorphous phase ambiguity of 5IR
method.

FH}!::FH_F;A (SJ

Here F, is the contribution of both the normal
scattering and real part of the anomalous scattering,
F; , is the contribution of the imaginary part of the
anomalous scattering, F,* denotes the conjugate of
F . It follows from (4) and (5) that,

Fg—Fy™=2Fy 4 (6)

The magnitudes of Fj and F g * can be obtained from
experiment and then Fy , can be derived. Hence we
also have two ways for drawing the triangle of (6)
leading to an enantiomorphous phase doublet for Fy,
as shown in Fig. 5.

[f there 1s some way to break the above phase
amiguities, then SIR and OAS method will be of great
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 Fig. 5. Enantiomorphous phase ambiguity of OAS
' method.
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Importance in protein structure analysis. Because it is
then possible to determine a protein structure from a
single pair of isomorphous crystals or just the heavy-
atom derivative. Even more, if some suitable anom-
alous scatterers are contained in the native protein,
then by OAS method, the structure might be de-
termined from the native protein alone. Real space
method was first proposed to slove the phase am-
biguity of SIR method (Blow & Rossmann, 1961).
New development has recently been made. With the
so-called ISIR method (Wang, 1981; 1984) a dozen of
unknown protein structures have been solved.
However, the method 1s subject to the limitation that
it would not be applicable when the replacing-atoms
are In a centrosymmetric arrangement. Reciprocal
space method using partial structure information to
resolve the phase ambiguity of OAS method has been
proposed by Hendrickson & Teeter (1981). The meth-
od has successfully solved some unknown protein
structures. On the other hand, attempts have been
made since 1960’s to solve the phase ambiguities of
SIR and OAS method by making use of direct
methods (Fan, 1965b; Coulter, 1965; Karle, 1966).
Recently, Hauptman (1982a, b), Giacovazzo (1983)
and Karle (1983, 1984) have succeeded in deriving
large number of three-phase structure invariants from
the error free data of a model protein structure. An
alternative procedure has been proposed in our group
(Fan, 1983; Fan, Han, Qian & Yao, 1984: Fan, Han &
Qian, 1984; Fan & Gu, 1984). The method is capable
of deriving individual phases instead of three-phase
invariants and has been tested with error free and
experimental data of a number of proteins. Further
description will be given in the following paragraph.
Owing to the capacity of linking together phase
information from various sources, direct method
would eventually not be an opponent but rather a
companion of other methods for breaking enantio-
morphous phase ambiguities.

5. A generalized method for breaking enantiomorphous
phase ambiguities and the application 1o protein
structures

All the enantiomorphous phase ambiguities de-
scribed 1n this paper can be expressed by the phase
doublet

Py=Puxldoy].
In the case of SIR;

Pu=Py r
and

Apy= icﬂs_l[(Fij’.D_FiLR_FEH.N.)IQFH,RFH.N] -
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In the case of OAS:
Ph=Ph 4

where ¢ 4 , 1s the phase of Fy; , .
Apy=tcos [(Fjy —F)/2F .

In the case that the phase doublets are due to
a centrosymmetric partial structure or a pseudo
centrosymmetric E-map:

pu=2nH r, .

where r, 1s the positional vector of the pseudo inverse
centre with respect to the origin of the unit cell. | Ap |
1s calculated by

tan Aoy =+ (Fy—Cq)'"?/Cy .

where

Cy=), ficos2nH (r;—r,),
J

r; denotes the positional vector of any one of the two
possible positions, which corresponding to the Jjth
atom 1n the unit cell.

Now the problem of resolving any kind of enanti-
omorphous phase ambiguity is reduced to that of
finding the signs of A¢,. According to Fan (1983), the
probability for Ay, to be positive is given as

]
P-r("jﬂpﬂ):?

1 , . . , |
+—2-tanh [sin|A@y | Y Kyy sin(®+ Aoy + Aoy _u)]
=
(7)
where
KHHJ — 20-35 E_S'I;E.E;HEHfEH -~ H'

D3 = — P+ Py t+Pu_u -

Using the concept of *best phase relationship’ (Fan,
Han & Qian, 1984) and incorporating the partial
structure information (Fan & Gu, 1984), equation (7)
can be modified to give

Z, My My g Ky

1 I ,
P-i-{AcPH}:_ +7 tanh{ﬁm | ilpr| [
H

2

X 51“(‘;)3. T A@H“hegl + 4 @H—H'hcﬁt} T X Siﬂ 511':\} (8)

with

l 2
My =exp(— ﬂﬁfl){[2(f3’+ - 2)

| 1/2
+2}(1—c{}5 2A@y)+ cos 2.&1@;;} ; (9)
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,

I
tan (A@Hm_m):2(Pi — 2—)5111 |;:1igr;rﬂlfJ cos Aoy (10)

and

/ 3
XZZHEEHEH_F;"I Z Zu 5
' u

‘ﬁﬂz@ﬂ.p_@;ﬁf'

The subscripts p and u denote the known and un-
known part of the structure respectively. Applications
of (8), (9) and (10) to protein structures are elucidated
in the following examples:

Example 1. Application to error free SIR data of
insulin and its Pb-derivative with the
replacing-atoms in  non-centrosym-
metric arrangement

Error free SIR data were calculated according to
the model structures of insulin and its Pb-derivative.

[nsulin crystallizes in space group R3 with a=82.5A,

c=34.0A, =120 and Z=9. There are ~ 6400 inde-

pendent reflections at 1.9 A resolution. In the test

calculation only 1000 largest E’s were used and 60000

of the total ~75000 X, relationships were involved.

Starting with P, =1/2, values of my and Agy, ..,
were calculated using (9) and (10) respectively and

Table 1. Test result on the error
free SIR data of msulin.

Group o ER
l 035 7
2 89.8 1]
3 §2.5 16
4 il 18

The reflections were arrangeged in descending order of
FP=|FP,—1/2] and then cumulated into 4 groups. The
groups numbered 1. 2, 3 and 4 contain the top 200, 400, 600
and 800 reflections respectively.

",: the percentage of reflections with the signs of A,

correctly determined.
ER: the averaged error of phases in degree.

then substituted into (8) to calculate the probabilities.
Most of the P, so obtained differed greatly from 1/2,
the phase ambiguities were thus broken. With the
newly calculated P_. one more cycle of iteration led
to further improvement on the reliability. The results
are listed in Table I. It shows that the method is
capable of dertving large number of initial phases with
high rehiability.

Example 2. Application to error free SIR data of
APP and its Hg-derivative with the
replacing-atoms in centrosymmetric
arrangement

APP (avian pancreatic polypeptide) crystallizes in
space group C2 with ¢=34.18A, h=32.92A, ¢=

28.44 A, =105.30" and Z=4. There are ~2100

independent reflections at 2A resolution. 1000 of

them with largest E’s were used and 60000 of the total
~ 130000 X, relationships were involved in the test.
Two kinds of phase ambiguities simultaneously
occured 1n this example. One 1s inherent in the SIR
method, this can be resolved as in the above example.

The other comes from the special arrangement of

the replacing-atoms, this causes the term

SIN (D 5 APy vea T APy - yves) to be identical with

zero at the begining of iteration. In order to over-

come this difficulty a multi-solution procedure using
random starting sign sets was applied (Yao & Fan,

1984). Results from the first ten random starting sets

are listed in Table 2 from left to right in descending

order of the figures of merit. It can be seen that the
results having the highest figures of merit are in
good agreement with the theorectical values.

Example 3. Application to experimental OAS data
of the Hg-derivative of APP

In this example OAS data of the Hg-derivative of
APP were treated such as in solving an unknown
structure. 1000 largest £'s and 60000 largest 2,
relationships were used. The result 1s listed in Table 3.
From the result, 1t 1s reasonable to expect that the
structure can actually be solved by the method used
here.

One of the present trends on the development of

Table 2. Test result on the error free SIR data of APP.

FOM 4136 4091 3995 3918 3848 3690 381 3518 3446 3362
Set ] 8 9 P 3 10 5 4 7 6
Group w BER = BER: WFER. £ BER 5. PR 2 ER- 8 BR & e BR W FER. 2. ER
| 92.0 7 905 S 9510 6 895 i0 B0 16 &0 21 685 5] U5 A9 600 39 665 42 |
2 863 15 833 I8 ¥E8S | 81 & I8 823 |9 J53 26 (33 42 570 49 635 A (O3 44
3 sy 20 80 20 9% 18 748 2! JdR8 23 G687 W 625 39 560 46 627 38 602 42
4 24 72) 8 21 J43 ) 6 23 706 25 641 30 608 37 536§ 43 580 37 5645 30
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Table 3. Test result on the experimental
OAS data of APP.

Group " ER
| 95.0 24
2 90.8 | 30
3 91 3 29
. §9.0 3

direct methods 1s to collaborate with other methods
rather than to supplant them. The combination of
direct methods with SIR or OAS method may be an

entrance for direct methods to the ab-initio phasing of
protein diffraction data. This in turn may improve the
art of protein structure analysis.

The author 1s indebted to Drs. G. Dodson and E.
Dodson and to Prof. T. L. Blundell for making
available the insulin and APP data respectively.
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