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depend on the collimation of synchrotron radiation; 
it is determined by the source size, as in usual optics. 
The upper bound is inversely proportional to the 
effective source size, and it is independent of the 
magnetic field of the source point in the storage ring. 
The upper bound is larger than the lower one because 
of the collimation of synchrotron radiation. When 
both the electron beam divergence and the ratio 
source size/source-to-crystal distance are small, com- 
pared with the intrinsic divergence of the radiation, 
the source coherence length is near its lower bound. 
This is usually the case in low-emittance storage rings. 
When the above ratio is large compared with the 
radiation divergence, as happens for high-emittance 
rings, the coherence length is near its upper bound. 
However, the coherence length is usually shorter in 
the latter case than in the former one. 

The contrast on the film is the same as on the exit 
surface of the crystal, except for a resolution loss, 
when the source correlation length is much smaller 
than the distance where the contrast along the crystal 
surface varies appreciably. This is the situation for 
high-emittance storage rings. For low-emittance rings 
this is not true if the contrast varies rapidly (e.g. 
dislocation images), unless the film is very near the 
crystal. However, such contrast modifications, which 
take place only in small regions of the image (where 
the contrast varies rapidly enough), are difficult to 

observe, because of the resolution loss. Thus, in the 
analysis of practical experiments, we may consider 
that the contrast of synchrotron white-beam topo- 
graphs is the superposition of the images produced 
by incoherent point sources situated on the entrance 
surface of the crystal. 
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Abstract 

An X-ray crystallographic method has been intro- 
duced into the image processing of high-resolution 
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electron microscopy. This enables the deconvolution 
of single electron micrographs of a crystalline sample. 
For this purpose the chemical composition of the 
sample should be known approximately, the image 
should be taken near the optimum defocus condition, 
but no preliminary knowledge of the crystal structure 
is needed. The method has been proved to be efficient 
with a high-resolution electron micrograph of chlori- 
nated copper phthalocyanine taken on the Kyoto 
500 kV electron microscope. 
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Introduction 

Different procedures have been proposed for the 
deconvolution of high-resolution electron micro- 
graphs. Most of them use a series of micrographs 
with different defocus. Uyeda & Ishizuka (1974, 1975) 
first proposed a method of image deconvolution 
based on a single high-resolution electron micro- 
graph. Later, Li Fang-hua & Fan Hai-fu (1979) repor- 
ted an alternative method, which makes use of the 
direct method in X-ray crystallography. This method 
has been tested by Han Fu-son, Fan Hai-fu & Li 
Fang-hua (1986). It turns out that the method is 
efficient except in cases where the electron micro- 
graph is taken near the optimum defocus condition. 
Hence it is important to have some method to fill this 
gap. On the other hand, procedures for the deconvol- 
ution using a single electron micrograph have so far 
been tested only by simulation. Hence in order to 
evaluate the method in practice a test on experimental 
electron micrographs is essential. In this paper, a new 
method is described which is particularly suitable for 
image deconvolution near the optimum defocus con- 
dition. Test results for an experimental electron 
micrograph are also given. 

Principle 
For a crystalline sample, the aim of image deconvo- 
lution should be to find correctly a set of structure 
factors whose Fourier transform will in turn yield the 
potential distribution function, i.e. the true structure 
image. Under the weak-phase-object approximation, 
in which the dynamic diffraction effect is neglected, 
the image intensities are related approximately to a 
set of structure factors by 

I(r)=l+2tr~o(r)*O-t[c(n)], (1) 

here I(r) is the image intensity at position r in real 
space. ~p (r) is the projection of the potential distribu- 
tion function. • -1 and * denote the inverse Fourier 
transform and convolution, respectively. C(H) is the 
contrast transfer function which depends on the imag- 
ing and photographic conditions and is a real function 
of the magnitude of the reciprocal vector H. tr = 
7r/AU, A is the electron wavelength and U the 
accelerating voltage. Fourier transformation of (1) 
gives 

T(H)=•(H)+2o'F(H)C(H), (2) 

where T(H) is the Fourier transform of l(r).  8(H)  is 
a delta function with its maximum at H = 0. F(H) is 
the structure factor with the reciprocal vector equal 
to H. Equation (2) can be rearranged as below 
provided H ~ 0 and C(H) ~ O. 

F(H) = T(H)/2trC(H).  (3) 

By making use of (3) one can derive both the 

magnitude and the phase of F(H) from the Fourier 
transform of image intensities, T(H). 

The magnitude of F(H) 

Consider the average of IF(H)I 2 within a narrow 
ring on the reciprocal plane with a mean radius equal 
to H; we have from (3) 

<[F(H)I2}H ={IT(H)I2)H/4O'2C2(H). (4) 

On the other hand, as is well known in X-ray crystal- 
lography (Wilson, 1949) we have 

N 

(IF(H)[2). --- E f~(n), (5) 
j = l  

where f2(H) is the atomic scattering factor of the j th 
atom for X-rays, and N is the number of atoms in 
the unit cell. By replacing f2(H) with the atomic 
scattering factor for electrons, (5) can be used in the 
case of electron diffraction. From combination of (4) 
and (5) it follows that 

N 

C=(H)=(IT(H)I2}n/4~2 E f}(H). (6) 
j = l  

Substitute (6) into (3). The magnitude of F(H) can 
be expressed as 

IF(H)I= T(H E H T(H 2)H (7) 
J 

All the terms on the right-hand side of (7) are either 
known in theory or derivable from experimental 
measurement. 

The phase of F(H) 

It is evident from (3) that the phase of F(H) is 
equal to that ofT(H) or 180 ° apart from it, depending 
on whether the sign of C(H) is positive or negative. 
With the weak-phase-object approximation, C(H) 
can be written as 

C(H)=sinxl(H)exp[-x2(H)], (8) 

in which 

x,( H) = rrAfXH 2 +½( rrCsX 3H4), 
x2(H) = ½( ¢r2A 2 H 4D2), 

where Af is the defocus value, Cs is the spherical 
aberration coefficient and D is the standard deviation 
of the Gaussian distribution of defocus due to 
the chromatic aberration (Fejes, 1977). Obviously 
exp [ -x2(H)]  is always positive. Hence only the term 
sin x~(H) can cause a sign change of C(H). In addi- 
tion, since Cs is nearly constant for a given electron- 
optical system, the only active factor affecting the 
sign of C(H) is Af. It is well known in electron 
microscopy that there exists a certain value of Af,/.e. 
the optimum defocus value, for which the sign of 
sin X, does not change within a wide range of H. 
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Under the weak-phase-object approximation, sin XI 
and hence the contrast transfer function C ( H )  will 
be mostly negative if Af is close to the optimum 
defocus value. Therefore we can write, according to 
(3), 

F(H) "-- -T(H)/2cr l  C (H)I , (9) 

o r  

Or~m "" Ox~m + w, (10) 

where 0 denotes the phase angle. Combining (9) and 
(6), we have finally 

IN / I 1/2 F ( H ) ' - T ( H )  ~ffif2(H) (IT(H)12)H (11) 
J 

This forms the basis of image deconvolution using a 
single electron micrograph under the weak-phase- 
object approximation and the optimum defocus con- 
dition. As is evident in (11), all we need for obtaining 
a set of structure factors F(H) are the image intensity 
distribution on a single electron micrograph and the 
chemical composition of the crystalline sample. 

Test and results 

The experimental electron micrograph of the crystal- 
line sample of chlorinated copper phthalocyanine 
(C32NsCII6Cu, a = 19.62, b =26-04, c=3 .76  ~ and 
fl = 116.5 °) is shown in Fig. 1, which was taken on 
the Kyoto 500kV electron microscope with A = 
0.0142 A, Cs = 1.06 mm, D = 100 A and Af"- 500 A. 
The micrograph was digitized using the Perkin-Elmer 
PDS microdensitometer data acquisition system with 
50 x 50 Ixm aperture. The two-dimensional unit cell 
( a ' =  a sin g = 17.56, b = 26.04 A) was divided into 
l l 0 x  124 pixels. Ten unit cells were measured and 
then averaged to give the image intensity distribution 
on a unit cell. A half-tone graphical representation 
of the digitized averaged image is shown in Fig. 2(a). 
Fourier transformation of averaged image yielded a 
set (48 in total) of two-dimensional T(H) at 2 A 
resolution. Values o f - T ( H )  are listed in Table 1 as 
FI(1). The deconvolution was then done on T(H) as 
follows. The T(H)'s were arranged in descending 
order of IHI. Each IT(a)l 2 was averaged with ten 
neighbours (five on each side) to give the value of 
(IT(H)[ 2) which in turn was substituted into (11) to 
calculate the corresponding F(H). The set of decon- 
voluted structure factors so obtained is shown in 

Fig. 1. The original micrograph of chlorinated copper phthalo- 
cyanine at 2 A resolution. 

(a) 

(b) 

(c) 

/ 
Fig. 2. Images of chlorinated copper phthalocyanine at 2 A resol- 

ution. (a) Half-tone graphical representation of the digitized 
result of the original electron micrograph. (b) The deconvoluted 
image of (a). (c) The theoretical image. 
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Table 1. Comparison of structure factors obtained from the 2~ electron microscopic image, the corresponding 
electron diffraction pattern and the structure model of chlorinated copper phthalocyanine 

h k F t ( 1  ) F t ( 2 )  Fo F M h k F t ( 1 )  F~(2)  F o F M 

2 0 0.649 0.673 0.637 1.116 5 5 1.124 0.857 0.925 1.401 
4 0 -0 .383 -0 .319 0.577 -0 .576 7 5 -0 .024 -0 .046 0.315 -0.061 
6 0 -0 .568 -0 .448 0.889 -0 .609 0 6 -0 .559 -0.521 0.750 -0-375 
8 0 -0 .064  -0-128 0.228 -0.673 2 6 0.016 0.016 0.205 0.331 
1 1 0-266 0.342 0.790 0.471 4 6 0.043 0.036 0.172 -0 .412  
3 1 1-117 1.294 0.810 0-493 6 6 0.289 0.422 0.299 -0.003 
5 1 0.199 0.177 0.212 -0 .136 1 7 0.844 0-671 0-633 0.456 
7 1 0.583 0.604 0.873 1.795 3 7 1.358 1.071 0.984 1.151 
0 2 0.366 0.419 0.832 1.162 5 7 -0 .247 -0 .282 0.592 0-478 
2 2 -0 .844  -0 .949 1.087 -1 .217 7 7 -0 .200 -0 .620 0-583 -1 .472 
4 2 0.163 0.147 0.152 0.522 0 8 -1 .265 -0-986 1.027 -1 .343 
6 2 -0 .064  -0 .052 0.220 0.226 2 8 -0 .419 -0.325 0.615 -0 .358 
8 2 0.197 0-398 0.533 0.449 4 8 0.940 0.914 0.998 1.243 
1 3 -0-161 -0.171 0.830 -0 .542 6 8 0.136 0.433 0.275 0-834 
3 3 0.568 0.528 0.193 0.223 1 9 0.964 0.836 0.990 1.405 
5 3 0.186 0.150 0.166 0.361 3 9 -0 .145 -0.177 0.211 0.282 
7 3 -0 .235 -0.275 0.312 -0 .554 5 9 -0 .187 -0.791 0.702 -0 .968 
0 4 1-131 1.305 1.045 1.167 0 10 0-738 1.169 0.945 1.211 
2 4 0-925 1-051 0.288 0.489 2 10 -0.001 -0.003 0.387 -0 .435 
4 4 -1 .141 -1 .006 0.863 -0-510 4 10 0.013 0.042 0.601 -0 .845 
6 4 0.490 0.426 0.721 0.393 1 11 0.182 0.378 0.647 0-597 
8 4 -0.021 -0 .065 0.169 0.625 3 11 0.054 0-170 0.261 0.363 
1 5 0.137 0.128 0.363 0.217 0 12 -0.361 -1 .142 0.965 -0-702 
3 5 -1.751 -1.737 0.975 -1-123 2 12 0.049 0.150 1.039 0-820 

Fz (1): structure factors from the 2 ,~, electron microscopic image before deconvolution. 
Ft(2):  structure factors from the 2 ,~ electron microscopic image after deconvolution. 
Fo: structure-factor magnitudes from the diffraction pattern. 
FM: structure factors calculated from the structure model 

Table 1 as F~ (2). For comparison, a set of structure 
factors calculated from a model is given in Table 1 
as FM. The model is the same as that used by Kirkland, 
Siegel, Uyeda & Fujiyoshi (1985), which was esti- 
mated from the electron diffraction data (Uyeda, 
Kobayashi & Suito, 1972) and standard tables for 
bond lengths and angles for metal phthalocyanines. 
A set of structure-factor magnitudes measured from 
the electron diffraction pattern can be found in Table 
1 as Fo. Among the four sets of 'structure factors' 
Fo and FM are most similar to each other. However, 
the discrepancy between Fo and FM, R =  
Y IIFoI--IFMIIIE IFMI, is still as large as 0.382. This 
is mainly due to the large experimental error on the 
diffraction measurement, the imperfection of the crys- 
talline sample and the dynamic electron diffraction 
effect. The R factor for the structure factors before 
deconvolution, F/(1), with respect to F~ is 0.564 
while that for the structure factors after deconvo- 
lution, F~ (2), is 0.505. The R factor for F~ (1) with 
respect to Fo is 0.468 while that of FI(2) is 0.394. 
Despite the unusually large values of R factor, the 
improvement gained from the deconvolution is 
obvious. This can be further confirmed in real space. 
The deconvoluted image was obtained by inverse 
Fourier transformation of F/(2). A half-tone 
graphical representation of the resulting image is 
shown in Fig. 2(b). The theoretical image calculated 
with FM is shown in Fig. 2(c). As can be seen the 
theoretical image is much closer to the deconvoluted 
image than to the undeconvoluted one (Fig. 2a). 

Discussion 

The result can be made even better by improving the 
photographic recording technique. For example, the 
same image can be recorded on a series of photo- 
graphs taken with different exposure times. This is 
an analogue of the multiple-film technique used in 
X-ray diffraction analysis. 

While the present method is proposed for image 
deconvolution near the optimum defocus condition, 
it is not difficult to extend the method for use in cases 
far from this condition. By using (6) we can calculate 
an experimental curve of C2(H) from the image 
intensities and the chemical composition of the 
sample. On the other hand we can calculate a set of 
theoretical C2(H) curves which correspond to a series 
of Afs with small interval. An appropriate Af can 
be determined by finding out one of the theoretical 
curves, which is best fitted with the experimental 
curve. Substitute the corresponding calculated C (H) 
into (3). A set of F(H) can then be calculated and 
the image deconvoluted. 

In comparison with the previous method (Han 
Fu-son, Fan Hai-fu & Li Fang-hua, 1986) the present 
method is much simpler in calculation. When zaf is 
close to the optimum defocus value, this method can 
give much better results. However, when Af is far 
from the optimum value, sin X1 will oscillate between 
+1 and -1  and will be sensitive to a small change of 
Af. In this case the previous method will be superior 
to the present one. Hence it is recommended to use 
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both methods simultaneously whenever there is any 
doubt in practice. 
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Abstract 

This paper is the first of a series of three devoted to 
crystallography in the five-dimensional space E 5. The 
38 types of point symmetry operations (PSO for short) 
are described i.e. 19 types of PSO+s or rotations and 
19 types of PSO-s or improper rotations; each of 
them generates a cyclic point group. A WPV (Weigel, 
Phan, Veysseyre) symbol is given both to the PSOs 
and to the cyclic groups. There is a generalization of 
the well known symbols of E 3. For instance, 6 is the 
symbol of a point group of ~3 (and E4), and 6 has 
app_lication in ~:5 (and E6); but new symbols such 
as 6, 66 are also required. 

Introduction 

Before giving the geometrical name of the 23 crystal 
families of the space E 5 and the WPV symbol* of their 
holohedries, i.e. the crystallographic point group of 
their empty lattice, we must list all the types of crys- 
tallographic point symmetry operations (cr PSOs for 
short). Indeed these cr PSOs generate the cr point 
groups and determine their WPV symbols. 

To start we recall the number of types of cr PSOs 
and their WPV symbols in spaces of dimension less 
than five (Veysseyre & Weigel, 1989) 

2 cr PSOs in El: 1 and m; 
6 cr PSOs in ~:2: 1, 2, 3, 4, 6 and m; 

* WPV: Weigel, Phan & Veysseyre (1987) generalized Hermann- 
Mauguin symbols. 
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10 cr PSOs in E 3 -" 1, 2, 3, 4, 6 and m, 1, 3, 4, 6; 
24 cr PSOs in E4:1, 2, 3, 4, 6, 14, 24, 26, 32, 33, 43, 

44, 46, 63, 66, 55, 1010, 88, 1212 and m, 1, 3, 4, 6. 
Let us remember that 3 ~y, 3 for short, is the elemen- 

tary rotation through the angle 27r/3 in the plane xy 
about a point in E 2, about the z axis in E 3 and about 
the 3-dimensional space ztu in E 5. 

On the other hand, the double rotation 1 3 8xy8zt, 88 
for short, about a point in E 4 (and about the axis u 
in ~:5) is the commutative product of two rotations 
through the angle 27r/8 in the plane xy about the 
plane zt, and through the angle 67r/8 in the plane zt 
about the plane xy. Let us recall that the two planes 
xy and zt are orthogonal and that they intersect at 
only one point. 

I. Crystallographic point symmetry operations of E s 

The number of types of cr PSOs is well known in E 5 
(Hermann, 1949; Weigel, Veysseyre, Phan, Effantin 
& Billiet, 1984). Indeed there are 19 types ofcr  PSO+s 
and 19 types of crPSO-s as in a space of odd 
dimension the number of cr PSO*s and of cr PSO-s 
are equal. The PSO*s are the proper rotations, and 
the PSO-s are the improper rotations. For example 
3 is the threefold rotation and hence it is a PSO*; 
is the threefold rotation-inversion or a rotation-reflec- 
tion through the angle - 2 ~ / 6 ,  it is a PSO-. A 
homothetie of ratio ( -1)  can be a PSO* if its 
dimension is an even number, such as 14 for instance, 
or a PSO- if its dimension is an odd number, e.g. 
13, 15 . . . .  
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