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1. The phase problem in diffraction analysis for solving crystal structures 
 In diffraction analysis, a crystal structure is represented by a general distribution of scattering 
density ρ(r). In the case of X-ray diffraction ρ(r) is the electron density function, while in the case 
of electron diffraction it is the potential distribution. The relative scattering amplitude of a unit cell 
is expressed by the structure factor F(H). Neglecting the dynamical diffraction effect F(H) is given 
by the Fourier transform of ρ(r): 
 

F(H)  =  ∫V  ρ(r)exp(i2πΗ.r)dv 
or 

F(H)  =  Σj  fj exp(i2πΗ.rj)     .                                   (1) 

 
 
Where H is a position vector in reciprocal space, i.e. the diffraction vector of F(H); r is a position 
vector in direct space; V is the volume of the unit cell; fj and rj are respectively the atomic 
scattering factor and the position vector of the jth atom within a unit cell. From (1) according to 
the Fourier transform theorem we have 
 

ρ(r)  =  ∫τ  F(H)exp(-i2πΗ.r)dτ 

or 

ρ(r)  =  ΣH  F(H)exp(-i2πΗ.r)     .                                 (2) 

                           
 
Here τ denotes the entire reciprocal space. Usually F(H) is a complex quantity and can be written 
as 
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F(H) = |F(H)|exp(iϕΗ)     .                                           (3) 

 
 
If one can measure from a diffraction experiment the whole set of structure factors F(H), including 
the magnitudes and phases, then the crystal structure analysis will be a straightforward task by 
calculating ρ(r) from (2). However from the experiment only the magnitudes |F(H)| but not the 
phases ϕH of structure factors can be obtained. Hence one has to recover the lost phases before 
equation (2) can be used. This is the well-known "phase problem" in diffraction analysis. 
 
2. Direct methods in crystallography 

 Direct methods is that kind of method which can retrieve the "lost" phases ϕΗ directly from a 

set of structure factor magnitudes |F(H)|. The mathematical basis of this is seen from equation (1) 
which can be split into the real and imaginary parts by making use of (3), i.e. 
 
 

|F(H)|cosϕΗ  =  Σj  fj cos(2πΗ.rj) 

and 

|F(H)|sinϕΗ  =  Σj  fj sin(2πΗ.rj)     .                              (4) 

 
 

The unknown quantities in (4) are the phase angle ϕΗ and the atomic coordinates xj, yj and zj (rj = 

xja + yjb + zjc; a, b and c are vectors defining the unit cell). Each measured magnitude |F(H)| 
gives two simultaneous equations and at the same time introduces one unknown quantity 

ϕΗ. Suppose that there are 300 independent atoms in the unit cell. Then there will be 900 unknown 

atomic coordinates. By measuring the magnitudes of 900 independent structure factors we can set 
up 1800 simultaneous equations, which are in principle sufficient to solve all the unknown 
quantities --- 900 phases and 900 atomic coordinates. In the case of X-ray diffraction, for a crystal 
of moderate complexity it is trivial to collect intensities of thousands of independent reflections. 
Therefore the phase problem and the crystal structure are over-determined by the whole set of 
structure factor magnitudes |F(H)|. Nevertheless crystal structures are not really determined by 
solving the simultaneous equations (4). Special mathematical approaches are used in direct 
methods to derive phases of structure factors from a set of structure factor magnitudes |F(H)|. The 
crystal structure is then revealed on the map calculated from (2). 
 One of the fundamental formulae of direct methods is the Sayre equation (Sayre, 1952), 
which describes the relationship among structure factors, including phases and magnitudes: 
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F(H)  =  (Θ/V) ΣH' F(H')F(H-H')     ,                               (5) 

 
 
where Θ is an atomic form factor and V the volume of a unit cell. The summation is over the 
entire reciprocal space. In theory the Sayre equation is valid only under the following conditions: 
 i) ρ(r) is everywhere positive; 
 ii) the crystal consists of discrete atoms which do not overlap each other; 
 iii) there are only one kind of atoms in the crystal. 
In practice conditions i and ii are nearly true for both X-ray and electron diffraction, while the 
condition iii could seldom be satisfied. The deviation from condition iii just gives rise to the 
"squaring effect" which renders, in the resultant map ρ(r), the heavy atoms much heavier while 
the light atoms much lighter than they should be. 
 The most widely-used formula in direct methods is probably the tangent formula (Karle & 
Hauptman, 1956): 
 

tan ϕ(Η) ≈  

ΣH'
|E(H')E(H-H')|sin{ϕ(H')+ϕ(H-H')}/ΣH'

|E(H')E(H-H')|sin{ϕ(H')+ϕ(H-H')},     

(6) 
 

where E(H) is the normalized structure factor, the magnitude of which can be obtained through 
|F(H)|. The tangent formula can be regarded as the angular portion of Sayre's equation, however 
unlike the Sayre equation, the summation ΣH' in the tangent formula can be composed of a small 
number of terms and the validity of the formula is evaluated by a probability distribution given by 
Cochran (1955): 
 
 

P(Φ3) = {1/2πIo(κ)} exp{ΣH' (κ cosΦ3)}     ,                            (7) 

 
where  
 

Φ3 = ϕ(Η) − ϕ(H') − ϕ(H-H')     , 

 

κ = 2σ3/σ2
3/2|E(H)E(H')E(H-H')|     , 

 

σn = Σj (Zj)n     ,      
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Zj   is the atomic number of the jth atom in a unit cell and Io is the zero order of a family of 

modified Bessel functions, In.  

 At present systematic techniques of applying the tangent formula and the Sayre equation to 
solve crystal structures from X-ray diffraction data have been well established. Important 
contributions were made by Woolfson and his colleagues (Germain & Woolfson, 1968; Yao, 1981; 
Debaerdemaeker, Tate & Woolfson, 1985, 1988). With the latest techniques of direct methods 
most crystal structures of moderate complexity can be solved in a routine way. 
 
3. Direct methods outside traditional field 

Direct methods are so successful that their important contribution to science has been 
recognized by the award of the Nobel Prize for Chemistry to two pioneers of direct methods, H. 
Hauptman and J. Karle. On the other hand direct methods are still limited to the structure analysis 
of single crystals with  moderate complexity using X-ray diffraction data. New application fields 
for direct methods remain to be explored. Recently direct methods are expanding along the 
following lines: 

i) from the structure analysis of single crystals to that of polycrystalline samples; 
ii) from ideal three-dimensional periodic structures to aperiodic structures, including 

incommensurate modulated structures and quasicrystals; 
iii) from X-ray crystallography to electron microscopy; 
iv) from small molecules to proteins. 

In the following, examples will be given on the last three topics. 
 
3.1 Direct methods for incommensurate modulated structures 
 A modulated structure can be regarded as the result of applying a  periodic  modulation to 
a regular structure. Fig. 1 shows two simplified examples.  The modulation wave (fig. 1a) in the 
figure represents the fluctuation of atomic occupancy. When it is applied to the background 
regular structure, the "heights" of the atoms are modified. A commensurate modulated structure 
(superstructure) will result (fig. 1b) if the period T of the modulation function is commensurate 
with the period t of the structure, i.e. T/t=n, where n is an integer. The resulting superstructure now 
has a true period T and a pseudo period t, respectively corresponding to a true unit cell and a 
pseudo unit cell. On the other hand, if T is incommensurate with t (fig. 1c), i.e. T/t=r, where r is 
not an integer, we obtain an incommensurate modulated structure, in which no exact periodicity 
occurs, although t remains a pseudo period. A modulation function can also represent a fluctuation 
in atomic positions and the positional modulation can also be either commensurate or 
incommensurate. In practice a modulated structure can simultaneously include different kinds of 
occupational and/or positional modulations.  
 An incommensurate modulated structure produces a three-dimensional diffraction pattern, 
which contains satellites round the main reflections. An example of a section of such a 
three-dimensional diffraction pattern is shown schematically in fig. 2. The main reflections are 
consistent with a regular three-dimensional reciprocal lattice although the satellites do not fit the 
same lattice. On the other hand, although the satellites are not commensurate with the main 
reflections, they have their own periodicity. Hence, it can be imagined that the three-dimensional 
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diffraction pattern is a projection of a four-dimensional reciprocal lattice, in which the main and 
the satellite reflections are all regularly situated at the lattice nodes. From the properties of the 
Fourier transform the incommensurate modulated structure here considered can be regarded as a 
three-dimensional "section" of a four-dimensional periodic structure. The multi-dimensional 
representation of incommensurate modulated structures, which forms the basis of structure 
analysis in multi-dimensional space, was first proposed by de Wolff and further developed by 
Janner & Janssen (de Wolff, 1974; Janner & Janssen, 1977; de Wolff, Janssen & Janner, 1981). 
 Up to the present, studies of incommensurate modulated structures were mostly based on 
preliminary assumption of the modulation function. Direct methods have been extended for 
solving incommensurate modulated structures in multi-dimensional space. According to Hao, Lui 
& Fan (1987) the Sayre equation (5) is also valid for a multi-dimensional periodic structure with 
the reciprocal vector H defined in a multi-dimensional space. The right-hand side of equation (5) 
can be split into three parts: 
 

 

F(H)  =  (Θ/V) ΣH' Fm(H')Fm(H-H') 
 

+ (2Θ/V) ΣH' Fm(H')Fs(H-H') 

 

                + (Θ/V) ΣH' Fs(H')Fs(H-H')     .                             (8) 

 
 
Here subscript m stands for main reflections while subscript s stands for satellites.  Since the 
intensities of satellites are on average much weaker than those of main reflections, the last 
summation on the right-hand side of (8) is negligible in comparison with the second, while the last 
two summations on the right-hand side of (8) are negligible in comparison with the first. Letting 
F(H) on the left-hand side of (8) represents only the structure factor of main reflections we have to 
first approximation  
 
 

Fm(H)  ≈  (Θ/V) ΣH' Fm(H')Fm(H-H')     .                           (9) 
 
 
On the other hand, if F(H) on the left-hand side of (8) corresponds only to satellites, it follows that  
 
 

Fs(H)  ≈  (2Θ/V) ΣH' Fm(H')Fs(H-H')     .                           (10) 
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Notice that in this case the first summation on the right-hand side of (8) has vanished, because any 
three-dimensional reciprocal lattice vector corresponding to a main reflection will have zero 
components in the extra dimensions so that the sum of two such lattice vectors could never give 
rise to a lattice vector corresponding to a satellite. An exception to this can be found only when the 
average structure itself is a four- or higher-dimensional periodic structure as in the so-called 
composite structures, the analysis of which will be discussed in the lecture given by Prof. 
Beurskens in this Workshop. Equation (9) indicates that the phases of main reflections can be 
derived by a conventional direct method neglecting the satellites. Equation (10) can be used for 
the phase extension from the main reflections to the satellites. This provides  a way to determine 
directly the modulation functions.  
 Structure details of the incommensurate modulation of the Pb-doped Bi2Sr2Ca2Cu3Ox 
high-Tc superconductor have been revealed for the first time using this method (Mo, Cheng, Fan, 
Li, Sha, Zheng, Li & Zhao, 1992). Since single crystals suitable for X-ray diffraction analysis are 
extremely difficult to prepare for this compound, electron diffraction instead of X-ray diffraction 
was used. One dimensional modulation is found from the electron diffraction pattern. All 
reflections can be indexed using four-integer indices. The 0klm electron diffraction pattern were 
measured yielding intensities for 42 main reflections and 70 first order satellites. The phases of 
main reflections were calculated from the known average structure (Sequeira, Yakhmi, Iyer, 
Rajagopal & Sastry, 1990), while the phases of satellite reflections were derived by the phase 
extension according to (10). A Fourier map was then calculated which is the four-dimensional 
potential distribution function projected along the a axis. By cutting this Fourier map 
perpendicular to the fourth dimension we obtain the projection of the incommensurate modulated 
structure along the a axis in the three-dimensional real space. The result is shown in fig. 3, in 
which ten unit cells of the average structure are plotted along the b axis showing how the atoms 
are modulated from one unit cell to the other. Both occupational and positional modulations are 
evident for Bi atoms. The strong occupational modulation of Bi implies large amount of 
Bi-vacancies disordered on the planes normal to the b axis. The same feature is also seen for Ca 
and Sr atoms. Another prominent feature in fig. 3 is that oxygen atoms of the Cu(1)-O layer move 
towards the Ca layers forming a disordered oxygen bridge across the layers of 
Cu(2)-Ca-Cu(1)-Ca-Cu(2). In addition, occupational and positional modulations along the b axis 
are also found for the disordered oxygen atoms. The disordered arrangement and modulation of 
oxygen atoms imply large amount of O-vacancies on the Cu(1)-O plane.  
 
3.2 Direct methods for combining electron diffraction and electron microscopy
 Crystalline materials important in science and technology, such as high-Tc superconductors, 
are often too small in grain size and too imperfect in periodicity to carry out an X-ray single 
crystal analysis, but they are suitable for electron microscopic observation. The electron 
microscope is the only instrument which can produce simultaneously for a crystalline sample a 
micrograph and a diffraction pattern corresponding to atomic resolution. In principle, either the 
electron micrograph or the electron diffraction pattern could lead to a structural image.    
 Dorset (1991) showed that a direct-method electron diffraction analysis, based on the 
kinematic   diffraction approximation, can be a powerful tool for crystal structure analysis. 
However, the phase problem in electron diffraction analysis is nothing like as easy to solve as it is 
in X-ray analysis. Electron diffraction patterns provide only a partial set of three-dimensional 
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reflections within a reciprocal sphere. This weakens the power of direct methods, since the 
number of phase relationships will be much decreased and some of the strongest relationships 
might be lost. In addition, the measurement of diffraction intensities is distorted by dynamical 
diffraction effects and the available techniques of intensity measurement do not compete in 
accuracy with those available for X-rays. This means that there are  considerable difficulties in 
applying direct-methods to electron diffraction analysis.  
 High resolution electron microscopy has made great progress in recent years in the study of 
crystalline materials (Li, 1990). It still has two major disadvantages:  
     i) in most cases a high resolution electron micrograph does not directly reveal the true 
structure; what is obtained is a convolution of the structural image with the Fourier transform of a 
contrast transfer function. Hence some technique is needed to restore the blurred image. 
     ii) the point-to-point resolution of the micrograph is insufficient to resolve individual atoms 
in most cases. Hence some procedure is required to enhance the resolution.  
 The above problems can be solved by combining the information from an electron 
micrograph with that from the corresponding electron diffraction pattern. Direct methods play an 
important role in such a combination. Details of the technique will be described in the lecture by 
Prof. Li in this Workshop. A program is now writing for the electron crystallographic image 
processing and is hopefully to be released by the end of this year. 
 
3.3 Direct phasing of one-wavelength anomalous scattering (OAS) data from proteins
 Multiple isomorphous replacement is now dominating the structure analysis of proteins with 
no structural precedent. It may occur that the derivatives are difficult to prepare, or they are not 
isomorphous with the native protein. In this case multi-wavelength anomalous scattering (MAS) 
can in principle be used, if there are some suitable heavy atoms in the native protein or its 
non-isomorphous derivative. However MAS technique suffers from the difficulty of collecting and 
scaling data at different wavelengths accurately. OAS technique does not have this difficulty but it 
leads to the problem of phase ambiguity. There were several early proposals to use direct methods 
to break the phase ambiguity inherent in the OAS technique (Fan, 1965; Hazell, 1970; Sikka, 1973; 
Heinerman, Krabbendam, Kroon & Spek 1978). The method of Fan (1965) has been extended and 
tested with experimental protein diffraction data. Details of the method are given here. The phase 
doublet from OAS is expressed as  
 
 

ϕH = ϕ''H ± |ΔϕH|     ,                                                                                                   (11) 

 where ϕ''H is the phase of   

F''ano = Σj  iΔf''j exp(i2πΗ.rj) = |F''ano|exp(iϕ''H) 

|ΔϕH| is calculated by 

|ΔϕH| = | cos−1 {(F+ − F−)/2|F''ano|} |     . 
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By introducing the concept of best phase, ϕH,best , and figure of merit, mH , used in protein 

crystallography into the direct-method approach for dealing with enantiomorphous phase 
ambiguity (Fan, Han & Qian, 1984), there is obtained  
 
 

ΔϕH,best = ϕH,best  − ϕ''H    ,                                         (12) 

 

tan (ΔϕH,best) = 2(P+− 1/2) sin |ΔϕH| /cos ΔϕH                             (13) 
and 
 

mH = exp(−σ2
H/2) {[2(P+− 1/2)2 + 1/2] (1 − cos 2ΔϕH) + cos 2ΔϕH}1/2   ,        (14) 

 
 

where σ2
H is related to the experimental error and can be calculated from the men square of the 

"lack of closure error" (Blow & Crick, 1959). The probability that ΔϕH is positive, P+ is given by  

 
 

P+ = (1/2) + (1/2) tanh { sin |ΔϕH|  × 

[ΣH' mH' mH-H' κH,H' sin (Φ'3 + ΔϕH',best + ΔϕH-H',best) + χsin δH ]}     ,              (15) 

 
where  

Φ'3 = − ϕ''H + ϕ''H' + ϕ''H-H'     , 
 

χ = 2|ΕHΕH,ano|/σu     , 

 

δH = ϕH,R − ϕ''H     . 

 
 

In the above expressions, ΕH,ano is the contribution of the anomalous scatterers to the normalized 
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structure factor ΕH; σu = Σu (Zu)2/σ2 , Zu is the atomic number of the uth atom which belongs to 

the unknown part of the structure, and σ2 = Σj (Zj)2 ; ϕH,R is the phase contributed from the real 

part scattering of the anomalous scatterers. A procedure for using (12) - (15) is now described. 

Values of ΔϕH,best and mH are calculated for each reflection using (13) and (14), assuming that 

P+ = 1/2. The  values of ΔϕH,best and mH are then substituted into (15) to obtain for each 

reflection a new P+ , which   will mostly differ from 1/2. Substituting the new values of P+ into 

(13) and (14) gives an improved set of ΔϕH,best and mH. Next ϕH,best is calculated from 

ΔϕH,best from (12) and values of ϕH,best and mH are then used with the observed structure-factor 

magnitudes to calculate the best Fourier map.   
 The above procedure has been tested (Fan, Hao, Gu, Qian, Zheng & Ke, 1990) with the  
experimental OAS data from the Hg-derivative of the protein aPP (Blundell, Pitts, Tickle, Wood, 
& Wu, 1981). The sample crystallizes in space group C2 with unit cell dimensions a=34.18, 
b=32.92 c=28.44Å and β=105.30o and with one molecule of 36 amino-acid residues in the 
asymmetric unit. Diffraction data were collected with CuKα radiation and 2108 independent 

reflections at 2Å resolution were observed and used in the test calculation. The resultant 
direct-method phases led to an interpretable electron density map, a part of which is shown in fig. 
4. The correlation coefficient between the electron density map phased by the direct method and 
that calculated from the true phases is 0.70. The mean phase error of the direct-method phases in 
comparison with the true phases is 38.4o for the total of 2108 independent reflections at 2Å 
resolution. Test with another known protein of moderate size is now undertaking. 
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Figure 1. Occupational modulation of a one-dimensional structure 
(a) modulation wave with a period equal to T; (b) upper row: one-dimensional regular 
structure with atoms shown as thick vertical lines and with a period equal to t; lower 
row: the resulting commensurate modulated structure; (c) upper row: one-dimensional 
regular structure; lower row: the resulting incommensurate modulated structure 
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Figure 2. Schematic diffraction pattern of an incommensurate modulated structure 
The vertical line segments indicate projected lattice lines parallel to the fourth 
dimension 
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Figure 3. The 3-dimensional potential distribution function of the Pb-doped Bi-2223 
superconductor projected along the a axis. Ten unit cells are plotted along the b axis, 
showing the period of modulation to be approximately 8.5 times the length of b. 
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Figure 4. Portion of the electron-density map for aPP calculated with phases derived by using 
equations (12) - (15) 
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