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1.  Notation

h the reciprocal-lattice vector, which corresponds to the diffraction index hkl

Fh the structure factor at the reciprocal-lattice node defined by h

Fh the magnitude of Fh

ϕh the phase of Fh

Eh the normalised structure factor corresponding to Fh

Eh the magnitude of Eh

F
o
h the structure-factor contribution from the non-anomalous scatterers

F’h,A the structure-factor contribution from the real-part scattering of the

anomalous scatterers, i.e.

 F h' ( ' ) exp( ), A A A

A

N A

Af f i= + ⋅
=

∑ ∆ 2
1

πh r

F”h,A the structure-factor contribution from the imaginary-part scattering of the

anomalous scatterers, i.e.

 F h" " exp( ), A A
A

N A

Ai f i= ⋅
=

∑ ∆ 2
1

πh r

σn = Σj (Zj)
n, Zj is the atomic number of the j

th atom in the unit cell, n is an integer

equal to 2 or 3

σu = Σu (Zu)
2/σ2, Zu is the atomic number of the u

th atom, which belongs to the

unknown part of the structure

Subscripts:

A the anomalous scattering atoms

R the replacing atoms of an isomorphous pair

N the atoms in the native protein

D the atoms in the heavy-atom derivative of the native protein

p the atoms of the partial structure with known positions in the unit cell

u the atoms of the unknown part in the unit cell

2.  Introduction
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Solving a macromolecular structure by using single isomorphous replacement (SIR) or

one wavelength anomalous scattering (OAS) data is important when it is difficult to

prepare multiple isomorphous derivatives and to collect multiwavelength anomalous

diffraction data. However the phase ambiguity intrinsic in SIR or OAS data obstructs

the use of them. Various kinds of direct methods have been proposed to solve the

problem. [1 - 13]. Some of them have been successfully tested with experimental

protein-diffraction data [14 - 18]. In this paper the methods of Fan et al. [9, 14] will be

discussed in detail.

3.  The phase ambiguity in SIR and OAS cases

In the case of SIR for a given reciprocal-lattice vector h, we have

                                                  F F F
h h h, , ,D N R− =      .                                        (1)

From experiment we know the magnitudes of Fh,D and Fh,N . Accordingly, we can find

the positions of the replacing atoms and calculate the vector Fh,R . Thus we have two

different ways to draw the triangle of (1) leading to an enantiomorphous phase doublet

for Fh,D or for Fh,N , as shown on the left part of figure 1. In the OAS case, we have

                                                   F F F
h h h

+ − =−*

,

"
2 A      .                                         (2)

The magnitudes of F 
+

 h and F 
–
*h can be obtained from experiment, while F ”h,A can be

derived. Hence we have also two ways to draw the triangle of (2) leading to an

enantiomorphous phase doublet for Fh , as shown on the right part of figure 1.

The phase doublet in both SIR and OAS cases can be expressed as

                                                  ϕ h = ϕ’h ± ∆ ϕ h      .                                      (3)

In the SIR case

                                                         ϕ’h = ϕ h,R      ;                                              (4)

                          ∆ϕ h = ± cos− 1(F2
h,D − F2

h,N − F2
h,R / 2Fh,N Fh,R )     ,        (5)

if ϕ h denotes the phase of a reflection from the native protein;

                      ∆ϕ h = ± cos− 1(F2
h,D + F2

h,R − F2
h,R / 2Fh,D Fh,R )     ,        (6)

if ϕ h denotes the phase of a reflection from the derivative.
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Figure 1.  Phase ambiguity (doublets) arising in the single isomorphous

replacement (SIR) and one-wavelength anomalous scattering (OAS) cases
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In the OAS case

                                                         ϕ’h = ϕ”h,A      ;                                              (7)

                                     ∆ϕ h = ± cos− 1(F 
+

 h + F − h / 2Fh,A )     .                       (8)

ϕ h now denotes the phase of

                                              F h = (F 
+

 h + F −* h) / 2     ,                                    (9)

where F −* h is the conjugate of F − h .

To summarise, the problem of splitting the above enantiomorphous phase doublets

can be converted into that of finding the sign of ∆ϕ h given the known values of ϕ’h and

|∆ϕ h| . Alternatively, defining

                                                    A’h = Fh cos ∆ϕ h                                            (10)

and

                                                    B’h = Fh sin ∆ϕ h     ,                                       (11)

the problem becomes that of finding the sign of B’h from the known values of A’h and

|B’h| .

4.  The phase difference relations

We start from a modified Sayre’s equation [2]:

             F h = (θ h, u / V) ∑ h’ F h’ F h − h’ − ∑p [(θ h, u / θ h, p) − 1] F h, p   ,

(12)

where θ is an atomic form factor, the subscript u denotes the unknown part of the

structure consisting of light atoms, while p denotes the partial structure of known heavy

atoms. Replacing F h by F h exp ( iϕh ) and replacing ϕh by ϕ’h + ∆ϕ h , we obtain [19]:

                            F h exp ( ι ∆ϕ h ) = (θ h, u / V) ∑ h’ F h’ F h − h’

                            × exp[i(−ϕ’h + ϕ’h’ + ϕ’h − h’ + ∆ϕ h’ + ∆ϕ h− h’)]

                                             − ∑p [(θ h, u / θ h, p) − 1] F h, p exp [i(ϕ h, p − ϕ’h)]     .

(13)

Taking the imaginary part of  (13), it follows
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            F h sin ∆ϕ h = (θ h, u / V) ∑ h’ F h’ F h − h’ sin (Φ’3 + ∆ϕ h’ + ∆ϕ h− h’)

                           − ∑p [(θ h, u / θ h, p) − 1] F h, p sin(ϕ h, p − ϕ’h)     ,         (14)

or equivalently

B’h = (θ h, u / V) [∑ h’ (A’ h’ A’ h − h’ − B’ h’ B’ h − h’) sin Φ’3

                                                 + 2∑ h’ A’ h’ B’ h − h’ cos Φ’3]

                           − ∑p [(θ h, u / θ h, p) − 1] F h, p sin(ϕ h, p − ϕ’h)     ,         (15)

where

                                    ′ = − + + −Φ3 ϕ ϕ ϕ' ' 'h h' h h'       .                             (16)

              
Equation (14) is the ‘phase-difference relation’, while (15) may be regarded as a

‘modified component relation’. In the case of SIR with a centrosymmetric heavy-atom

arrangement (15) reduces to one of the original component relations [3]:

           B h = (2θ h, u / V) ∑ h’ A h’ B h − h’ − ∑p [(θ h, u / θ h, p) − 1] B h, p   ,

(17)

while in the case of OAS with a centrosymmetric heavy-atom arrangement, (15) reduces

to the other original component relation:

A h = (θ h, u / V) ∑ h’ (A h’ A h − h’ − B h’ B h − h’)

                               − ∑p [(θ h, u / θ h, p) − 1] A h, p     .                                (18)

Here A h and B h are the real and imaginary components of the structure factor,

respectively.

With (14) or (15) it is possible to derive the signs of ∆ϕ h or B’h by a simple

procedure like that of using Sayre’s equation [20] for a centrosymmetric structure [21].

A special case, which should be mentioned here, is that a centrosymmetric heavy-atom

arrangement in a non-centrosymmetric crystal causes phase ambiguity even for small

structures. If this occurs with a set of SIR protein data, we get a ‘two-fold’ phase

ambiguity. The solvent flattening technique [22, 23] can not break the SIR phase

ambiguity in this case, although it works quite effectively otherwise. On the other hand

equation (17) can easily resolve the phase ambiguity under this circumstance, since we

know already A h , B h, p and the absolute value of B h . The only problem is to find the

signs for B h by making use of equation (17), which relates the real and the imaginary

parts of structure factors, A h and B h.
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5.  A tangent-formula among ∆ϕ h and the probability of ∆ϕ h to be positive

According to Cochran [24], for a set of triplets ϕ h − ϕ h’  − ϕ h − h’ , the conditional

probability distribution of ϕ h given E h, E h’, Eh − h’. ϕ h’  and ϕ h − h’ is as follows:

                           P N( ) exp[ cos( )]
'

' ' 'ϕ κ ϕ ϕ ϕh
h

hh h h h h= − − −Σ      ,              (19)

where N is a normalizing factor and

                                          κ σ σh h h h h h, '
/

' '= −
−2 3 2

3 2 E E E      .

With equation (16) and the expression ϕ h =ϕ’ h  + ∆ϕh , the triplet phase becomes

                      ϕ h − ϕ h’  − ϕ h − h’ = ∆ϕ h − ( Φ’3 + ∆ϕ h’ + ∆ϕ h− h’)     .

(20)

Substitution of (20) into (19) gives

            P N( ) exp[ cos [ ( ' )]
'

, ' ' '∆ ∆ Φ ∆ ∆Σϕ κ ϕ ϕ ϕh
h

h h h h h h= − + + −3    .     (21)

Let

                        α sinβ  = ∑ h’ κ h, h’ sin [ Φ’3 + ∆ϕ h’ + ∆ϕ h− h’]                   (22)

and

                       α cosβ  = ∑ h’ κ h, h’ cos [ Φ’3 + ∆ϕ h’ + ∆ϕ h− h’]                  (23)

(21) becomes

                        [ ]P I( ) ( ) exp[ cos( )]∆ ∆ϕ π α α ϕ βh h= −−
2 0

1
     ,               (24)

where Io(α) is the zero-order modified Bessel function of the first kind with α as

argument. Equation (24) is the probability distribution of ∆ϕ h based on Cochran’s

distribution. By maximising (24) we have β = ∆ϕ h and hence from (22) and (23) it

follows

                        tan

sin( ' )

cos( ' )

, ' '
'

'

, ' '
'

'

∆
Φ ∆ ∆

Φ ∆ ∆
ϕ

κ ϕ ϕ

κ ϕ ϕh

h h h

h

h h

h h h

h

h h

=
+ +

+ +

∑
∑

−

−

3

3

     .          (25)
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This is a tangent formula relating the phase differences.

On the other hand, according to Sim [25], if partial structure information is

available, we have

                                [ ]P I x xSim ( ) ( ) exp[ cos( )]θ π θ= −
2 0

1
     ,                   (26)

where

x = 2 Eh Eh,p /σu   ,   θ = ϕ h − ϕ h, p

With the expression ϕ h =ϕ’ h  + ∆ϕh , (26) becomes

                    [ ]P I x xSim ( ) ( ) exp[ cos( )]∆ ∆ϕ π ϕ δh h h= −
−

2 0

1
     ,         (27)

where

δ    h = ϕ h, p − ϕ’ h     .

By multiplying equations (27) and (24), and by introducing the concept of ‘best phase

relationship’ [26], we finally obtain a tangent formula for phase differences ∆ϕ h ,

which is based on Cochran’s distribution and Sim’s distribution and the concept of ‘best

phases’ in protein crystallography:

tan

sin( ' ) sin

cos( ' ) cos

' ' , ' '
'

'

' ' , ' '
'

'

∆
Φ ∆ ∆

Φ ∆ ∆
ϕ

κ ϕ ϕ δ

κ ϕ ϕ δh

h h h h h h

h

h h h

h h h h h h
h

h h h

=
+ + +

+ + +

− −

− −

∑
∑

m m x

m m x

best best

best best

3

3

 (28)

with the corresponding probability

{P+ = + ×( ) tanh sin∆ ∆ϕ ϕh h

1

2

1

2

            }[ sin( ) sin ],m m xbest besth' h h' h h'
h'

h' h h' h− −∑ ′ + + +κ ϕ ϕ δΦ ∆ ∆3   ,        (29)

where

δ ϕ ϕh h h= −, 'p    ,   ∆ϕ ϕ ϕh h hbest best= − '    ,  ′ = − + + −Φ3 ϕ ϕ ϕ' ' 'h h' h h'     ,

                            tan( ) ( ) sin cos∆ ∆ ∆ϕ ϕ ϕh h hbest P= −+2
1

2
 ,                (30)

m Ph h
2

h h= − − + − +





+exp( ) [ ( ) ]( cos ) cosσ ϕ ϕ2 2

1

2

1

2
1 2 22

1 2

∆ ∆  .  (31)
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The figure of merit mh is a measure of reliability of ∆ϕ hbest . mh includes three factors:

(i) exp(-σ 2
h / 2), a measure of the sharpness of the phase-doublet distribution;

(ii) (P+ − ½)
2
 , a measure of the bias of ∆ϕh towards positive or negative. It reaches the

maximum value when P+ equals 0 or 1; (iii) cos 2∆ϕ h , a measure of the closeness of

the two possible phases, ϕ’h + ∆ϕ h and ϕ’h − ∆ϕ h . It reaches the maximum value

when ∆ϕ h equals 0 or π . Either of the last two factors will have no effect on mh when

the other one reaches the maximum value. A procedure for breaking the SIR or OAS

phase ambiguity making use of equations (29), (30) and (31) has been proposed and is

implemented in the program OASIS [27].

6.  Applications

After a series of test calculations with error-free data, our method was first successfully

applied to the OAS data of the protein aPP [14]. The first application to experimental

SIR data was done with the protein Rhe [28]. The method was further combined with

the solvent-flattening technique showing substantial improvement in dealing with

experimental protein OAS and SIR data [15, 18]. More recent results will be discussed

in another lecture [29].
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